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Abstract: Reliable, easy-to-use, and cost-effective wearable sensors are desirable for continuous
measurements of flexions and torsions of the trunk, in order to assess risks and prevent injuries
related to body movements in various contexts. Piezo-capacitive stretch sensors, made of dielectric
elastomer membranes coated with compliant electrodes, have recently been described as a wearable,
lightweight and low-cost technology to monitor body kinematics. An increase of their capacitance
upon stretching can be used to sense angular movements. Here, we report on a wearable wireless
system that, using two sensing stripes arranged on shoulder straps, can detect flexions and torsions
of the trunk, following a simple and fast calibration with a conventional tri-axial gyroscope on board.
The piezo-capacitive sensors avoid the errors that would be introduced by continuous sensing with
a gyroscope, due to its typical drift. Relative to stereophotogrammetry (non-wearable standard
system for motion capture), pure flexions and pure torsions could be detected by the piezo-capacitive
sensors with a root mean square error of ~8◦ and ~12◦, respectively, whilst for flexion and torsion
components in compound movements, the error was ~13◦ and ~15◦, respectively.

Keywords: capacitive; elastomer; flexion; torsion; sensor; wearable; wireless

1. Introduction

In order to prevent and assess the risk of musculoskeletal injuries related to body
movements in various contexts, continuous measurements of flexions and torsions of the
human trunk are desirable. Indeed, a variety of jobs expose workers to incorrect and even
risky body postures and movements, characterized by excessive and/or repeated flexions
and/or torsions of the trunk. Accordingly, the movements of the trunk are usually adopted
as key indicators to assess risks in occupational health management [1–4]. Therefore,
the possibility of continuously monitoring, in a simple way, flexions and torsions of
the trunk could improve health management programs in workplaces. Especially, such
measurements should preferably be obtained via wearable sensors, ideally able to combine
comfort, ease of use, reliability and low cost.

Today, the gold standard to monitor human kinematics is represented by stereopho-
togrammetry, where markers arranged on the subject are tracked by external cameras [5].
The high accuracy of this methodology is counterbalanced by the need for bulky, complex-
to-use and expensive equipment, which also requires that the subject is confined within
an empty space, so as to enable continuous tracking by the cameras. As a result, in
several contexts, stereophotogrammetry is not usable, and wearable solutions [6] are prefer-
able/necessary. Among them, the most sensitive and most used are inertial measurement
units (IMUs), electrogoniometers and electromagnetic sensors, as briefly recalled below.

IMU devices host tri-axial accelerometers, gyroscopes and magnetometers within
a small integrated unit. The accuracy of accelerometers and gyroscopes is respectively
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limited by sudden accelerations/decelerations and drifts (resulting from the integration
of an angular velocity), leading to errors that frequently require mutual compensations,
also in combination with the co-located magnetometer [7–9]. The resulting sensory fusion
complicates the sensing algorithms and, in the case of the use of the magnetometer, also
exposes the measurements to electromagnetic interference. Additional complexity and
computational costs often come from the combination with biomechanical models, which
are adopted to resolve uncertainties and therefore improve the accuracy [7]. Nevertheless,
it is possible that, in the future, at least some of these drawbacks will be overcome by
wearable implementations of different inertial technologies, currently under development,
such as nano-photonic optical gyroscopes [10].

Electrogoniometers are based on strain gauges, which provide ease of use and low
cost. As a drawback, the need for pacing them over joints causes possible interference
with the joint’s kinematics and discomfort, due to the limited flexibility and relative size of
these sensors [11,12]. Nevertheless, attempts to overcome these drawbacks are ongoing by
developing new kinds of electrogoniometers made of knitted conductive yarns acting as
piezo-resistive fabrics [13,14].

Electromagnetic sensors consist of wearable receiving coils that are localized relative
to external emitters of magnetic fields. Whilst their accuracy is potentially high, their
workspace is limited, owing to the spatial decay of the field; moreover, they are susceptible
to errors, due to electromagnetic interference [15,16].

Additional wearable sensing technologies, less conventional, include piezo-resistive
stretch sensors, made of conductive elastomers. They consist of planar stretchable resistors,
whose resistance increases upon lengthening. The most significant advantage of this tech-
nology is represented by the ease of fabrication of large arrays of distributed, lightweight
and cost-effective sensors, which can easily be integrated with garments (e.g., by screen
printing) [17–20]. Nevertheless, the resistances of this type of sensor can show significant
drift, due to both dimensional changes of the resistor as a result of viscoelastic creep and
changes in the material’s resistivity with temperature and humidity [17–20].

This brief overview suggests that the state of the art does not offer any technology able
to combine all the desirable properties of an ideal wearable sensor, i.e., high accuracy, stable
response, large workspace, compact size, low weight, comfort, ease of use and low cost.

In order to explore alternative ways to monitor human kinematics with wearable
systems, new investigations are being focused also on stretchable piezo-capacitive sensors
(here shortly referred to as ‘capacitive’ sensors), made of dielectric elastomers. Similar to
the above-mentioned stretchable piezo-resistive sensors, they too are elastomeric. However,
they consist of planar deformable capacitors, which, upon stretching, can increase their
electrical capacitance [21]. They are made of an elastomeric (e.g., silicone made) insulating
membrane, sandwiched between two elastomeric conductive layers (e.g., made of a carbon
black-silicone composite), acting as soft electrodes, so as to obtain a deformable capacitor.
By using them as wearable sensors, it is possible, following a calibration, to relate variations
of capacitances to changes in postures, as shown by various investigations [22–31].

Within that context, some of us proposed the use of elastomeric capacitive sensors
in a wearable low-cost system aimed at detecting motions of the human trunk [32]. It
consisted of modified shoulder straps carrying the sensors, in order to obtain a system
easily wearable onto or under common clothes. The idea was to avoid uncomfortable,
poorly practical/stable, or expensive solutions described in the literature, such as sticking
(with adhesive tape) the sensors onto the skin [25–28,30], or fabricating ad-hoc garments
with printed sensors [29]. Recently, we described an improved version of that system as an
inclinometer, able to detect the user’s flexions, comparing its performance with those of a
gyroscope and an accelerometer of a conventional IMU [33].

Here, we studied the accuracy of that system to monitor both flexions and torsions of
the trunk, especially targeting the following goals:

(i) the demonstration of a strategy to calibrate the system for flexions and torsions,
avoiding the limitations of typical solutions described in the literature, such as an-
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gular measurements with bulky, unpractical and/or expensive external equipment
(e.g., stereophotogrammetry [22–28]), or pose recognitions via interpolations of data
acquired from reference poses, which however do not provide accurate angular mea-
surements [29–31]; to that aim, in this study, we used a wearable three-axial gyroscope;

(ii) a comparison of the sensing accuracy of a new wearable system in measuring both
flexions and torsions, relative to conventional stereophotogrammetry (as the non-
wearable standard technology).

2. Materials and Methods
2.1. The Wearable Sensing System

The wearable system was conceived to monitor both flexions and torsions, defined as
rotations of the trunk within the user’s sagittal plane and transverse plane, respectively
(Figure 1). In order to detect those motions, the system consisted of modified shoulder
straps, made of an elastic fabric, which supported a pair of rectangular capacitive elas-
tomeric sensors, arranged as shown in Figure 2a.

Figure 1. Reference planes to define the user’s motions.

The two sensors were identical: they were made of a silicone elastomer membrane,
with carbon-based composite electrodes (Courtesy of Parker Hannifin, Mayfield Heights,
OH, USA), and had at rest a length of 100 mm, a width of 15 mm and a total thickness of 1
mm (including the electrodes’ insulation coating). For each sensor, a strain along the length
caused an increase in capacitance. Their sensitivity, measured as the ratio between the
percentage variation of capacitance and the percentage variation of length (strain), was ~1.

One end of each sensor was connected to a plastic box, which contained wireless
electronics (see the next section) and was located between the shoulder blades (Figure 2a);
the other end was clamped to the user’s trousers. As a result of clamping, the sensors
acquired a variable initial strain (pre-strain); for instance, in the example of Figure 2, it was
10% (as visible in Figure 2b,c, at time 0). As the pre-strain was substantially identical for
the two sensors (symmetrical mounting), the two initial capacitances were substantially
equal. Then, depending on the movement, the sensors could be strained in different ways,
as detailed below.
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Figure 2. The wearable sensing system, based on a pair of capacitive elastomeric sensors (a), able
to detect both flexions (b) and torsions (c). Flexions lengthened both the sensors, increasing their
initial strain (pre-strain) to a higher value, as shown in (b). Torsions lengthened one of the sensors
and shortened the other one, depending on the direction of motion, thereby changing their initial
strain to a higher or lower value, respectively, as shown in (c).

Prior to starting to use the system, the user was asked to maintain an erect position
for 5 s, so as to stabilize each capacitance signal. A predefined number of samples of each
stabilized signal was then averaged and taken as an initial offset (Co f f set), to be subtracted
from the subsequent measurements. Then, the capacitive signals were processed as follows.

Any pure torsion towards one side caused the sensor on the same side to shorten
(with preservation of tensioning) and the other one to lengthen. So, the strain, which was
initially equal for the two sensors, was reduced for one of them and increased for the
other one (Figure 2c). The same happened to their capacitances. Therefore, the absolute
value and sign of the difference of capacitances were respectively indicative of the torsion’s
amplitude and direction (rightwards or leftwards). Accordingly, pure torsions were easily
detected by monitoring the difference between the two capacitances (after removing the
initial offset), hereinafter called difference capacitance signal:

Cdi f f erence =
(

C1 − C1,o f f set

)
−
(

C2 − C2,o f f set

)
(1)

For pure flexions, the two capacitances were stretched of the same amount, such that
the difference capacitance remained substantially null (Cdifference ≈ 0) and so it was not
sensitive to the movement. However, the variation of the average signal was indicative
of the flexion’s amplitude. Therefore, without changing the sensors’ layout, pure flexions
were detected by monitoring the average between the two capacitances (after removing
the initial offset), hereinafter called average capacitance signal:

Caverage =

(
C1 − C1,o f f est

)
+
(

C2 − C2,o f f est

)
2

(2)

It is worth noting that, for pure torsions, the increase of one capacitance and reduction
of the other one made their sum approximately null (∆Caverage ≈ 0), such that their average
signal was not sufficiently sensitive to the torsion.

Therefore, by continuously monitoring both the difference and the average signals, it
was possible to infer whether the user was performing either a pure flexion (Cdifference = 0,
∆Caverage > 0), or a pure torsion (Cdifference 6= 0, ∆Caverage ≈ 0), or a compound movement
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(Cdifference 6= 0, ∆Caverage 6= 0). The quantification of the movement required a calibration,
which is described in the following sections.

It is important to remark that a variety of different trousers was observed to cause
unpredictable shifting of the sensors’ anchoring sites, such that repeated movements of any
given user could make the sensors’ stretching behavior unrepeatable. In order to minimize
that problem, the volunteers involved in this study (see below) were asked to test the
system in combination with the same type of elastic gym pants, adherent to the body.

2.2. Wireless Electronics

Continuous measurement of the two capacitances was performed with wireless elec-
tronics, consisting of a Bluno Beetle board (DFRobot, Beijing, China), equipped with a
Bluetooth 4.0 module and an IMU (MPU-6050, TDK InvenSense, New York, NY, USA),
which hosted a three-axial gyroscope. The gyroscope was used to both calibrate and com-
paratively assess the performance of the capacitive sensors (as detailed below). A 400 mAh
LiPo battery ensured continuous operation for ~12 h.

The board was programmed with a custom-made algorithm for measuring the capaci-
tance of each sensor. The algorithm continuously estimated the time constant τ necessary to
charge the capacitor via a series resistor R; as a result, the capacitance C could be estimated
as follows:

C = τ/R (3)

The board was also programmed to continuously extract from the gyroscope data
the flexion and torsion angles, according to the following procedure. Let us consider
Figure 1, where the green box schematizes the IMU (gyroscope) and x, y, z its axes. The
information of interest extracted from the gyroscope consisted in the angular velocity
signal within the sagittal plane, ωsagittal(t), i.e., relative to the axis x, and the angular
velocity signal within the transverse plane, ωtransverse(t), i.e., relative to the axis y. Those
two velocities were integrated, in order to obtain the flexion and torsion angles, Φflexion and
Φtorsion, respectively:

ф f lexion =
∫ t

0
ωsagittal(t)dt (4)

фtorsion =
∫ t

0
ωtransverse(t)dt (5)

The capacitive and angular data were simultaneously and wirelessly transmitted to
an external computer, interfaced to a Bluetooth module. In order to synchronize the signals
received from the wearable system and those captured by a stereophotogrammetry system
used for comparisons (as described below), a synchronization signal was generated using
the computer’s sound card.

The capacitive data were used to obtain signals related to difference and average
capacitances (Equations (1) and (2)), which were then translated into angular estimates,
based on the calibration strategy described below.

2.3. Capacitive Sensors’ Calibration Using the Gyroscope

In order to relate the difference and average capacitances to the torsion and flexion
angles, a calibration was necessary. However, the calibration had to be repeated each time
that the system was worn, even by the same person. Indeed, while wearing the shoulder
straps and securing them to the trousers, the sensors’ positions and pre-strain could vary,
causing a different response to any given motion.

According to this need, we aimed to employ a calibration technique satisfying the
following requirements: (i) possibility to separately achieve a calibration for flexions
and a calibration for torsions; (ii) ease of implementation by the user, without assistance
from others; (iii) use of compact, portable, accurate and inexpensive instrumentation;
(iv) possibility to perform calibration movements of arbitrary amplitude, so as to comply
with individual physical limitations.
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In order to fulfill these requirements, we opted for a calibration strategy that used a
wearable three-axial gyroscope integrated within a conventional IMU. The miniaturized
device was easily fitted within the electronics box (Figure 2a). The idea is that this simple
and cheap approach could conveniently be adopted in any capacitive sensors-based future
system. It is worth noting that the idea envisages the use of the gyroscope for calibration
only, excluding its use for continuous sensing over extended time; indeed, although
the device remains available on board, it should not be used continuously, in order to
avoid the typical errors due to drift, arising from extended integrations (as recalled in
the Introduction).

The calibration process consisted of two consecutive phases, one related to pure
flexions and the other one related to pure torsions, so as to obtain two independent
calibrations. In particular, the user was asked to perform five cycles of pure flexions with
free amplitude, followed by five cycles of pure torsions with free amplitude. Each flexion
cycle consisted of flexion from the straight position, followed by an extension, reverting to
the straight position. Each torsion cycle consisted of the following sequence: center–right–
center–left–center. In order to minimize, during the torsions, the risk of rotations of the
pelvis, as a simple strategy (targeting the highest practical viability) the user was asked to
stand with the pelvis in contact with a table and then rotate the trunk about the vertical
direction while keeping contact with the table (Figure 2c).

During the movements, the measurements from the capacitive sensors and gyroscope
were simultaneously transmitted to the external computer, where they were processed in
order to obtain the calibration. To that aim, instantaneous angular values detected with
the gyroscope were plotted as a function of the corresponding instantaneous values of
either the average capacitance or the difference capacitance; this allowed for achieving a
calibration related to either pure flexions or pure torsions, respectively. The data, which
covered the whole range of angles spanned during the five cycles of calibration movements,
were linearly fitted, obtaining two calibration lines: one for pure flexions and another one
for pure torsions.

2.4. Assessment of the Capacitive Sensors’ Accuracy

The sensing accuracy of the calibrated capacitive sensors was assessed with tests on
five volunteers (three females and two males, aged between 25 and 40 years), as follows.
The angular signals measured by the capacitive sensors were compared with angular
measurements simultaneously taken by a conventional stereophotogrammetry system
(Smart DX, BTS Bioengineering Srl, Milan, Italy). To that aim, six optical markers were
positioned on conventional anatomic landmarks, as shown in Figure 3, so as to enable their
optical tracking by the stereophotogrammetry cameras.

Figure 3. Optical markers used to enable optical tracking of the trunk’s motions via stereophotogrammetry.
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The volunteers were asked to perform both pure flexions and pure torsions, so as to
straightforwardly assess how the two movement-specific calibrations affected the sensors’
accuracy. Moreover, the volunteers were also requested to perform compound movements,
consisting of uncontrolled combinations of flexions and torsions, as presented in Figure 4.
This was aimed at investigating whether the two calibrations for pure movements could
also be used to detect flexion and torsion components of compound movements.

Figure 4. Photos and stereophotogrammetry tracking of examples of pure flexions, pure torsions and
compound movements performed by a volunteer, in order to test the capacitive sensors’ accuracy
relative to stereophotogrammetry.

For each type of motion, the accuracy relative to stereophotogrammetry was evaluated
by calculating the root mean square error (RMSE) between the calibrated sensors’ signal
Ssens and the stereophotogrammetry signal Sstereo:

RMSE =

√
∑n

i (Ssens,i − Sstereo,i)
2

n
(6)

where Ssens,i and Sstereo,i are the i-th samples of the signals and n is the total number of
samples. For each type of pure movement, the RMSE was calculated using only one
type of capacitive signal (either the difference or the average one) and only one type of
calibration line (either the one for pure torsions or the one for pure flexions). For compound
movements, two RMSE values were calculated: one for the flexion component (using the
average capacitive signal and the calibration line for pure flexions) and another one for
the torsion component (using the difference capacitive signal and the calibration line for
pure torsions).
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3. Results and Discussion
3.1. Capacitive Sensors’ Calibration

Results of the calibration are presented in Figure 5. It shows, for pure flexions and
pure torsions, examples of calibration signals simultaneously obtained from the capacitive
sensors (average or difference capacitance raw signal) and the gyroscope (angular signal)
during five cycles of motion. The figure also shows the calibration lines obtained by fitting
data collected by sampling the calibration signals, spanning five cycles.

Figure 5. Calibration of the sensors for pure flexions (left panels) and pure torsions (right
panels): calibration movements (a1,b1), examples of raw signal couples detected by the capaci-
tive sensors and gyroscope (a2, b2) and fitting of data related to five cycles of calibration movements
(indicated as flexion 1–5 and torsion 1–5) in order to obtain two calibration lines (a3,b3).

The two independent calibrations presented in Figure 5 were used to estimate angular
movements from capacitive measurements. The achieved accuracy is reported in the
next section.

3.2. Capacitive Sensors’ Accuracy

Figure 6 presents an example of measurements. It compares signals detected by the
calibrated capacitive sensors with the corresponding recordings simultaneously taken by
the stereophotogrammetry, for pure flexions (Figure 6a) and pure torsions (Figure 6b).
Moreover, the two signals are co-plotted with the one obtained from the gyroscope, as a
further comparison.
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Figure 6. Examples of pure flexion signals (a) and pure torsion signals (b) simultaneously detected
by the capacitive sensors, the stereophotogrammetry and the gyroscope.

Whilst the agreement was good for pure flexions and pure torsions, it was worse
for the flexion and torsion components of compound movements, as shown by the exam-
ples in Figure 7. Especially, the estimate of the torsion component was found to be less
accurate (Figure 7b).

Figure 7. Examples of flexion component signals (a) and torsion component signals (b) simultane-
ously detected by the capacitive sensors and the stereophotogrammetry.

The different accuracy of the capacitive sensors for pure or compound movements
is quantified in Figure 8. It presents the root mean square error relative to conventional
stereophotogrammetry, calculated for pure flexions and pure torsions (Figure 8a), as well
as for the flexion and torsion components of compound movements (Figure 8b). Pure
flexions and pure torsions could be detected with a good agreement (average RMSE ~8◦

and ~12◦, respectively), whilst the sensing accuracy for the flexion and torsion components
in compound movements was lower (average RMSE ~13◦ and ~15◦, respectively).

Both for pure and compound movements, the error related to flexions (or flexion
components) was lower than that related to torsions (or torsion components). So, in other
words, flexions could always be detected with a higher accuracy relative to torsions.
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Figure 8. Capacitive sensors’ accuracy, as quantified by the root mean square error between the
sensors’ signal and the stereophotogrammetry signal: pure movements (a) and compound move-
ments (b). The error bars represent the standard deviation among five volunteers.

Pure movements led to lower errors as compared to compound movements. Therefore,
in other words, pure flexions and torsions could always be sensed with a higher accuracy
relative to the flexion and torsion components of compound movements.

The higher errors achieved with compound movements could mainly be ascribed to
the following issues: (i) While performing generic motions (other than pure flexions or pure
torsions), any given final posture can be reached in different ways. So, from a geometrical
standpoint, any given variation of posture does not correspond to a single pair of flexion
and torsion components. However, during stereophotogrammetry-based motion tracking,
only a single pair of components is extracted: it corresponds to the convention used to
define the Euler angles (choice of the axes about which the rotations are made and their
sequence). Even for the capacitive sensors, only a single pair of components were extracted;
however, they consisted of a different couple, as they were obtained from the calibration
for pure flexions and pure torsions. Therefore, the compared data related to compound
movements are affected by a systematic difference between stereophotogrammetry and
capacitive sensors. (ii) The second source of error was occasional, rather than systematic
and consisted of unintentional rotations of the pelvis, as the latter was not immobilized
(Figure 4). Whilst those rotations were properly captured by the stereophotogrammetry via
the lower markers (Figure 3), they were not taken into account by processing the capacitive
signals, as they had been calibrated with two independent pure movements. (iii) Another
possible source of occasional error was represented by the fact that, during a compound
movement, the capacitive sensors could be stretched in different ways, such that one or
both of them could occasionally and partially adhere to the user’s trunk. The occurring
friction with the body could temporarily alter the stretching behavior and therefore also
the related variation of capacitance.

4. Conclusions and Future Developments

This work presented an easy-to-use and cost-effective wearable system for continuous
monitoring of flexions and torsions of the human trunk, either as pure or as compound
movements. It used elastomeric capacitive stretch sensors arranged on shoulder straps. A
simple and fast calibration strategy was implemented, using an onboard tri-axial gyroscope.
The sensing accuracy relative to stereophotogrammetry corresponded in general to an
average RMSE not higher than 15◦.

While this system showed the benefits of using capacitive elastomeric sensors to
monitor two degrees of freedom (flexion and torsion), greater advantages are expected
to arise from more extensive use of such wearable sensors, especially in terms of large
arrays. Indeed, this type of sensor is expected to show its highest potential for monitoring
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a large number of degrees of freedom, via dense arrays of small sensors able to implement
sensing distributed on the body. This is motivated by the higher simplicity and lower
cost than they would offer, as an alternative to the use, for instance, of a large number
of IMUs. With respect to them, an array of capacitive sensors not only would avoid the
typical problems recalled in the Introduction, but also could be distributed on the body
more easily and more conformably, e.g., by printing many thin, lightweight and stretchable
sensors on garments. This strategy has already been demonstrated in some cases, such as
the prototype glove described by Glauser et al. [29] and the commercial gloves produced
by StretchSense [34]. Such examples have strong roots in previously described distributed
large arrays of wearable elastomeric sensors, based on the piezo-resistive effect [17–20].

Nevertheless, the development of large arrays of distributed stretchable capacitive
sensors would raise challenges to achieve adequate calibrations of the system. Indeed, as
the number of degrees of freedom increases, the complexity of calibrating each of them
with an easy-to-use, miniaturized and low-cost technology (as targeted in this work) would
rapidly scale up, both from a technological and a methodological point of view. Therefore,
for such systems, the goal considered in this work of monitoring a certain number of
degrees of freedom should give room to a different way of conceiving the role of a wearable
system for distributed sensing: instead of measuring angles, the system should recognize
poses (postures or gestures), without knowledge of the concerned body segments’ angles.
The poses would correspond to different states of body portions, such as a set of postures
of the trunk or a set of gestures of the hand and they could be classified according to
different aims, such as differentiating healthy and risky postures or interpreting a gesture
language. This approach would take advantage of the use of machine learning algorithms,
in order to train, for instance, a neural network. This has been demonstrated in the past for
large distributed arrays of piezo-resistive elastomeric sensors [17–20] and ongoing work is
confirming equal benefits for arrays of piezo-capacitive elastomeric sensors [29,34].
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