

Università degli Studi di Firenze Scuola di Ingegneria

Corso di Laurea Magistrale in Ingegneria per la Tutela dell'Ambiente ed del Territorio

Anno Accademico 2013/2014

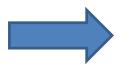
Valutazione delle emissioni di una stazione di depressurizzazione rete gas

Evaluation of emissions in a pressure letdown station

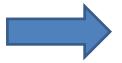
Relatori: Candidato:

Prof. Ing. Manfrida Giampaolo Zingoni Giulio

Prof. Ing. Fiaschi Daniele


Correlatore:

Ing. Russo Luigi


Sommario

Obiettivo

Verifica applicabilità di un'analisi CFD per la valutazione delle emissioni in impianti industriali

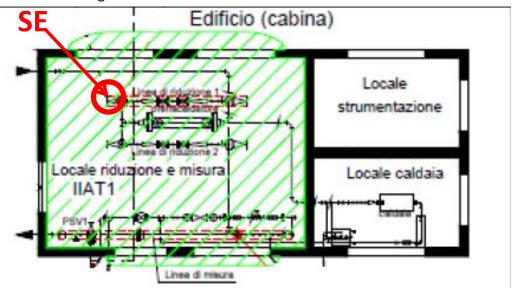
> Metodo

Simulazioni di fluidodinamica computazionale con il software OpenFOAM

> Applicazioni

Analisi effettuate:

- ventilazione naturale su edificio
- diffusione gas interno edificio


Risultati e Conclusioni

Caso di studio

Impianto di ricezione e prima riduzione di gas naturale da 75 bar a 24 bar in cabina fuori terra (norma CEI 31-35 2012)

- Simulazioni CFD (Computational Fluid Dynamic) di ventilazione esterna naturale
- Simulazioni CFD di diffusione di gas metano emesso da sorgente SE
- Tipologia sorgente di secondo grado (da funzionamento anomalo)
- Metodo del trasporto passivo di scalare
- Portata di emissione Q_g= 0,0028 kg/s

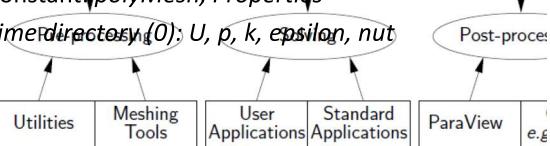
Computational Fluid Dynamic (CFD)

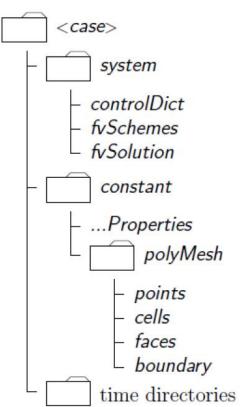
Tecnica di risoluzione delle equazioni che descrivono il moto di un fluido con l'ausilio di un calcolatore:

- Creazione di una geometria e di una griglia di calcolo
- FreeCAD
- Utilities blockMesh e snappyHexMesh di OpenFOAM
- Discretizzazione delle equazioni del modello di fluido incomprimibile
- Equazioni RANS (Reynolds-Averaged Navier-Stokes)
- Modello k-ε an.
- Impostazione delle co $\mu_t \neq \rho C_{\mu} \frac{k^2}{\epsilon}$ li e a contorno del sistema (boundary conditions) $\frac{\partial}{\partial \tau_i} \frac{\partial u_i}{\partial \tau_i} + \frac{\partial v_i}{\partial \tau_i} \frac{\overline{u_i}' \overline{u_j}'}{\overline{u_i}' \overline{u_j}'}$

Scelta del solutore (solver)
$$\frac{\partial(\rho k u_i)}{\partial x_j} + \frac{\partial(\rho k u_i)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\frac{\mu_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right] + 2\mu_t E_{ij} E_{ij} - \rho \epsilon$$

- $simpleFoam(\rho\epsilon) + \frac{\partial(\rho\epsilon u_i)}{\partial ank_i} = \frac{\partial}{\partial x_i} \left[\frac{\mu_t}{\sigma_\epsilon} \frac{\partial \epsilon}{\partial x_i} \right] + C_{1\epsilon} \frac{\epsilon}{k} 2\mu_t E_{ij} E_{ij} C_{2\epsilon} \rho \frac{\epsilon^2}{k}$
- Valutazione dei risultati e validazione del modello

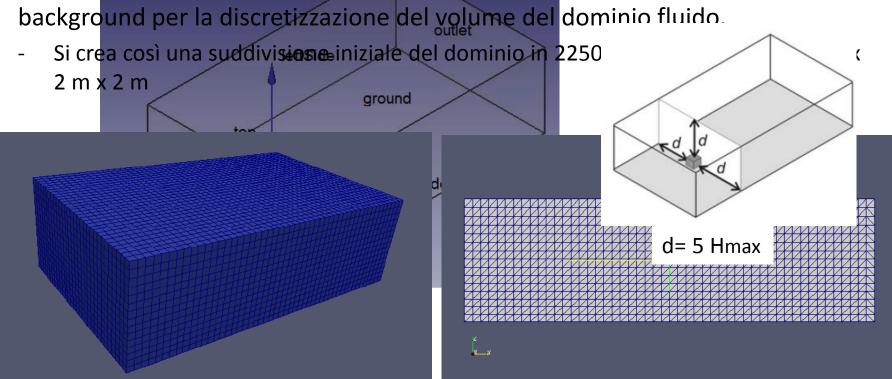



Software OpenFOAM

Programma open-source in ambiente Linux è costituito da applicazioni scritte in linguaggio C++ e creato per risolvere problemi meccanica dei continui, utilizzato nello studio di fluidodinamica.

Struttura di OpenFOAM

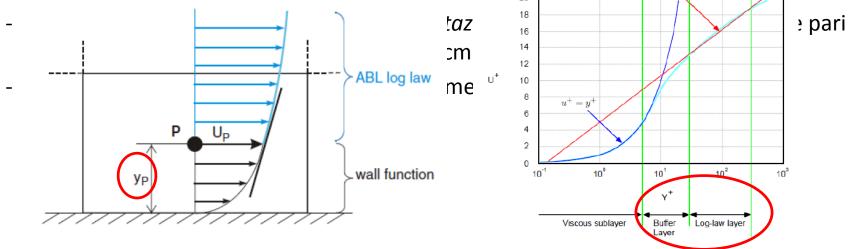
- Pre-Processing: creazione della mesh
- Solving: risoluzione delle equazioni
- Post-Processing: visualizzazione dei risultati
- **Workflow di OpenFOAM**
- system: control Dict, fyschemes, Fysolution (OpenFOAM) C++
- constant: polyMesh, Properties
- timerdiractory (0): U, p, k, exilon, nut

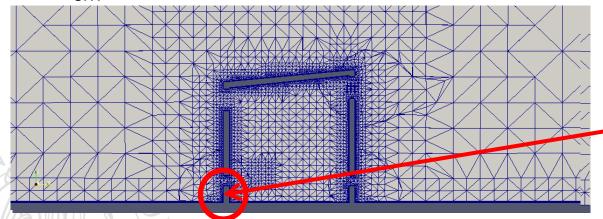


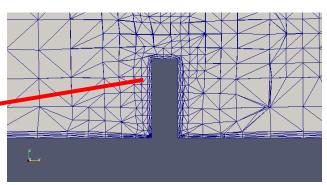
Costruzione della mesh

- Creazione della geometria dell'edificio con FreeCAD
- Scelta del dominio fluido del problema
- Discretizzazione del dominio: blockMesh

L'utility **blockMesh** di OpenFOAM è stata utilizzata per c background per la discretizzazione del volume del dominio flu




Costruzione della mesh


L'utility snappyHexMesh permette di raffinare una griglia su una superfice

in formato STereoLithography (STL).

- Aggiunta di 2 strati sulla superficie della *stazione* e 3 sul *ground* con spessore 1,5 cm

 $u^+=\frac{1}{-}\ln y^++C^+$

8.0

Implementazione simulazioni:

simpleFoam > boundary conditions

Il solver *simpleFoam* utilizza l'algoritmo SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) per la risoluzione delle equazioni del problema.

Boundary conditions per simulazioni con ABL condition:

Inizializzazione variabili in ingresso sulle superfici di contorno: velocità, pressione, viscosità cinematica, energia cinetica turbolenta, velocità di dissipazione dell'energia cinetica turbolenta

Inlet: Profilo di velocità con Atmospheric Boundary Layer condition

- Outlet: valore di pressione

 U m/s
 2-right Side left Side e toni condi
- 2 rightSide, JeftSide e top: condizione slip
- Ground e si azione: wall functions

$$U(z) = \frac{U^*}{K} \ln \left(\frac{z - z_g + z_0}{z_0} \right)$$

Boundary condit Ufl (z=10) r simulazioni con verocita costante:

Inlet: Profilo di velocità in ingresso costante con z (U=0,25 m/s)

Implementazione simulazioni:

scalarTransportFoam

Il solutore *scalarTransportFoam* è utilizzato per simulare il trasporto passivo di uno scalare in un campo di moto.

È stata effettuata una modifica al codice del solver:

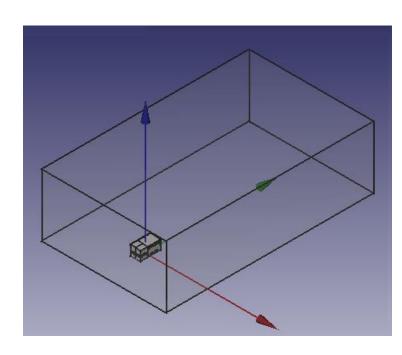
$$\frac{\partial T}{\partial t} + \nabla \cdot (U T) - \nabla^2 (D_T T) - \left(\nabla^2 \left(\frac{\mu_t}{ScT} T\right)\right) = fvOptions$$

- Boundary conditions:
- Viscosità cinematica (nut)
- Velocità (U)
- T (scalare)

da simulazioni simpleFoam

- Parametri di processo:
- Tempo di simulazione 3600 s (dopo un'ora si ipotizza la riparazione del guasto al riduttore)

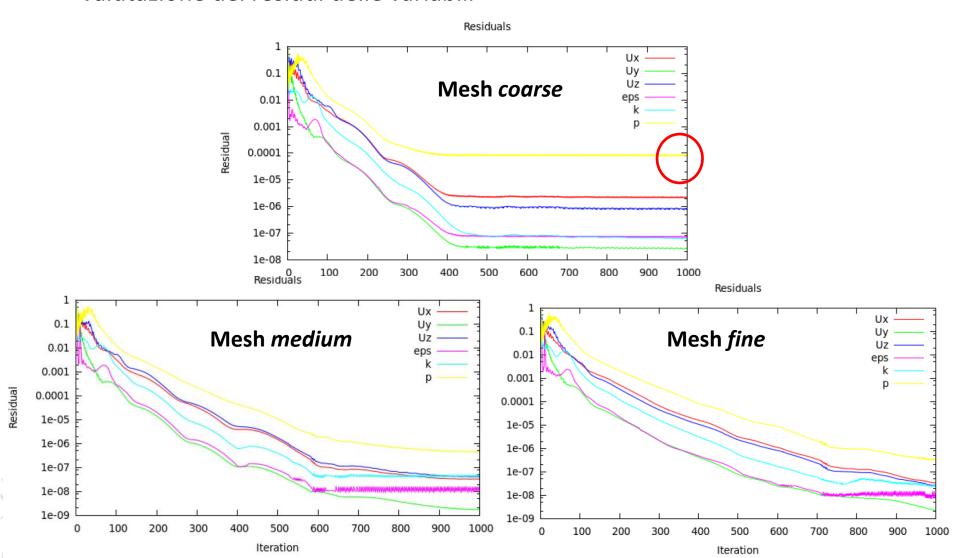
Elenco simulazioni:


Simulazioni effettuate (con simpleFoam e scalarTransportFoam):

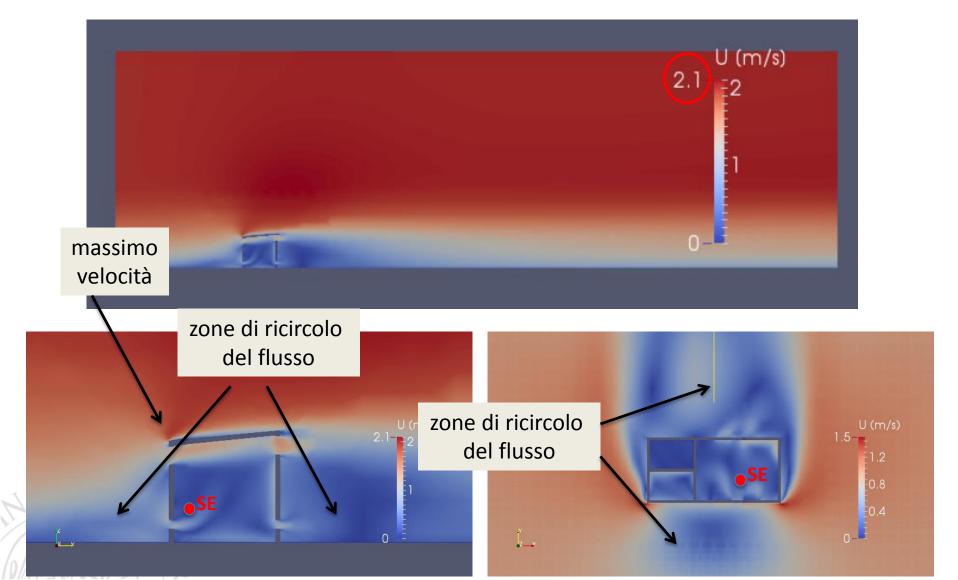
ABL inlet

- S.1.1 Configurazione standard
- S.1.2 Stazione ruotata di 90°
- S.1.3 Stazione ruotata di 180°
- S.1.4 Stazione ruotata di 270°

U cost inlet

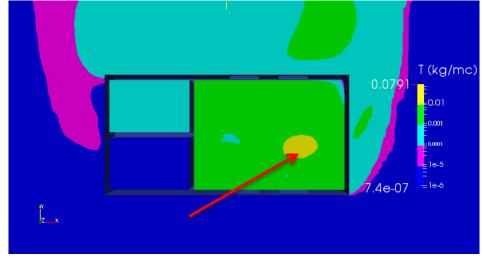

S.2 Stazione ruotata di 270°

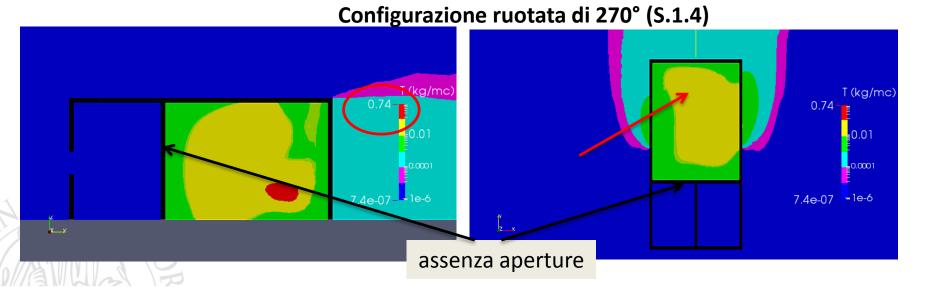
simpleFoam


- Analisi convergenza dei risultati (ABL condition)
- Valutazione dei residui delle variabili

simpleFoam (ABL condition)

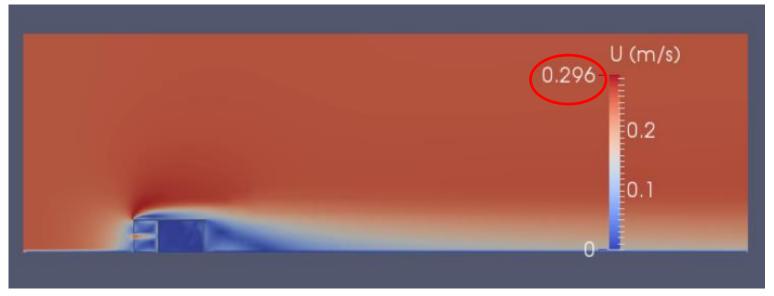
Campo di moto per configurazione standard (S.1.1):

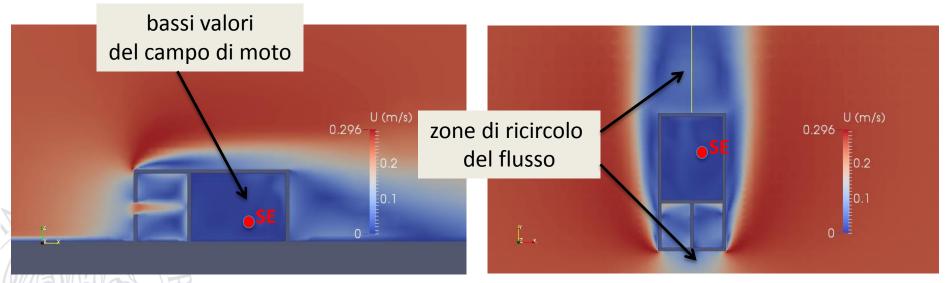



scalarTransportFoam (ABL condition)

Rappresentazione della distribuzione dello scalare T

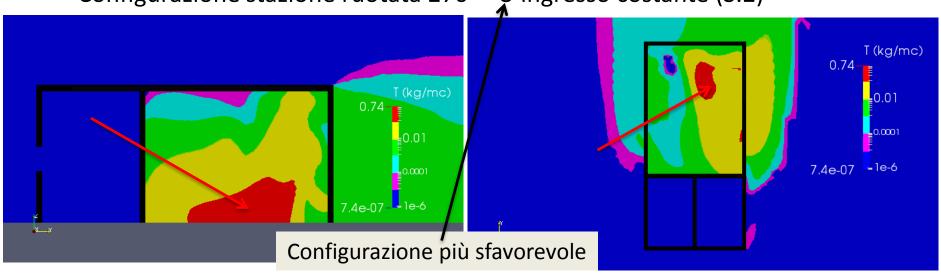
Configurazione standard (S.1.1)



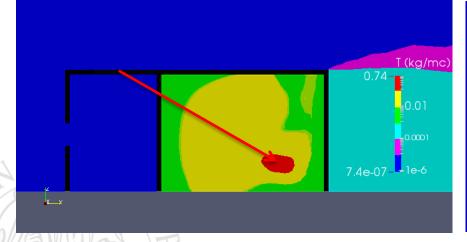


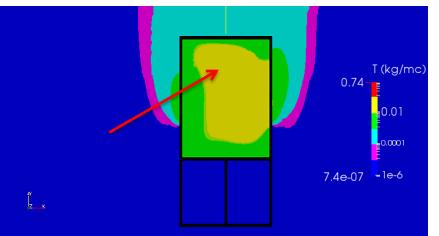
simpleFoam (U costante)

Campo di moto per configurazione ruotata 270° (S.2):



Contronto simulazioni:


scalarTransportFoam (U cost.-U ABL cond.)


Rappresentazione diffusione dello scalare T

Configurazione stazione ruotata 270° - U ingresso costante (S.2)

Configurazione stazione ruotata 270° - U ingresso ABL cond.(S.1.4)

Conclusioni

- Validità dell'approccio con software OpenFOAM per la risoluzione di problemi di fluidodinamica per ventilazione naturale su edifici e per la diffusione di inquinanti in impianti industriali
- Adeguatezza del metodo del trasporto scalare passivo (con modifica al codice) per la diffusione di gas da una sorgente emissiva puntuale in funzione del tipo di analisi effettuata

Sviluppi Futuri:

- Considerazione della componente del moto convettivo legata alle variazioni di densità provocate da differenze di temperatura:
- buoyantBoussinesqSimpleFoam
- buoyantSimpleFoam
- Inserimento di zone porose o ostacoli al passaggio del flusso all'interno delle aperture dell'edificio

Università degli Studi di Firenze Scuola di Ingegneria

Corso di Laurea Magistrale in Ingegneria per la Tutela dell'Ambiente ed del Territorio

Anno Accademico 2013/2014

Evaluation of emissions in a pressure letdown station

Relatori: Candidato:

Prof. Ing. Manfrida Giampaolo Zingoni Giulio

Prof. Ing. Fiaschi Daniele

Correlatore:

Ing. Russo Luigi