

Geothermal Energy Conversion

Highlights of Research at DIEF Daniele Fiaschi, Giampaolo Manfrida, Lorenzo Talluri

May 26th, 2016

Supercritical ORC for Geothermal Energy Conversion

DIEF Dipartimento di Ingegneria Industriale

- Completely closed ORC layout
- Heat capacity matching with Geothermal Resource (Well Production Characteristic)
- Close to Ideal Trapezoidal Cycle
- Objectives:
 - Power production
 - Total reinjection of NCGs avoiding flash and expensive NCG treatment for contaminants (H2S, Hg, NH3,...); includes reinjection of CO2

2016

Supercritical ORC: Case study

3

Heat Exchanger

2

4

PΡ

1

A

IHE

12

Condenser

6

7

Turbine

10

11

9

Input data (Monte Amiata Bagnore 3):

- h[1] = 1200 kJ/kg
- p[1] = 60 bar
- m[1] = 122 kg/s
- T[4] = 130 °C
- T[8] = 40 °C
- Depth of BH pump installation = 800 m
- ΔT_HE_approach= variable depending on fluid
- ΔT_IHE_inlet = 5 °C
- P[9]= variable depending on fluid
- Assigned well geometry (ϕ = 0,24 m)

Modeling Approach:

- Thermodynamic and Exergy Analysis
- Exergoeconomic (thermoeconomic) Analysis
- Model includes friction and heat losses in production well
- Optimized temperature profiles in HE e IHE with evaluation of local pinch (variable heat capacities on both sides, brine and working fluid)
- Optimal conditions for THD cycle with different fluids

Working Fluids:

- Refrigerants (R143a, R134a,....)
- Pure Hydrocarbons (n-esane, npentane,....)

5

Management of NCGs (CO₂) for complete reinjection

Objective:

- Obtaining an homogeneous liquid phase for reinjection
- CO₂ droplets of small diameter
- Density: $\rho_{CO2} > \rho_{H2O}$
- Gravity-induced stratification of liquid CO₂

	10/	39/	29/	
	1%	۷%	3%	
W _{tot}	47,51	146,3	241	kW
Q_{PC}	142,5	438,7	722,7	kW
Q_{IC}	125,5	386,5	636,7	kW
Q_{AC}	66,41	204,5	336,9	kW
<i>Q_{Condenser}</i>	85,14	262,2	431,9	kW
Q _{thermal user}	18	54	90	-
\dot{m}_{CO2}	0,618	1,903	3,135	kg/s
СОР	3,546	3,546	3,546	-

Cycle performance with variable CO2 contents of the brine

- T[6] = 15°C
- P[6] = 163 bar
- T[15] = 80°C
- T[13] = 40°C
- T cond = 40°C

T eva = -10°C

HE Temperature profile

ORC cycle diagram:

ORC: Performance (Brine = Water)

DIEF Dipartimento di Ingegneria Industriale

DEGLI STUDI ORC: Analysis with real brine properties (water and CO₂)

DIEF Dipartimento di Ingegneria Industriale

Non-dimensional performance

Deviation of Net Power (Brine/pure water) assessment: 0,08 Efficiency **N-butane** Isobutane N-pentane N-hexane RC318 R134a 0,06 **Exergy Efficiency** Power 0,04 Working fluid flow rate 0,02 **Turbine Power** 0 Pump power 3010 52010 -0,02,52% 2010 3010 52010 200 200 **HE effectiveness IHE effectiveness** -0,04 -0,06

ORC-N-esane	T_MAX=245,1	°C – T_CO=40°C
Thermal input	79267	[kWt]
Output net power	19532	[kW]
Hours per year	7446	[ore/anno]
Cost of kWh ORC	0.06384	[€/kWh]
Interest rate	10%	
Selling price electricity	0,0722	[€/kWh]
kWh per year	145435272	[kWh/anno]
Yearly cash flow	10500426,6	[€/year]
Total Capital Investment	10780000	[€]
Time span	20	[years]
O&M + insurance	323400	[€/ear]
NPV	72148051,3	[€]

UNIVERSITÀ DEGLI STUDI

FIRENZE

DIEF Dipartimento di Ingegneria Industriale

Comparison of ORC and supercritical CO2 solutions

DIEF Dipartimento di Ingegneria Industriale

Case study: Bagnore 3 Hybridization

DIEF Dipartimento di Ingegneria Industriale

Present Plant Layout

Flash Power Plant 100 600 1 (6) 550 -Geofluid path 500 -Saturated curve 2 YCO2=0.07 450 -x=0.30 400 150 300

2 8

s [kJ/kgR]

2015

35

Sustainability 2015, 7, 15262-15283; doi:10.3390/su71115262

Hybrid 1 – Base Case

DIEF Dipartimento di Ingegneria Industriale

ORC coupled to Liquid Brine heat recovery (single-flash)

DIEF Dipartimento di Ingegneria Industriale

2-pressure level ORC coupled to backpressure steam turbine; double-flash.

With air-cooled condenser ACC.

Hybrid 4 –ORC/BPS/TR

DIEF Dipartimento di Ingegneria Industriale

1-pressure level ORC coupled to backpressure steam turbine; double-flash; with total reinjection of NCGs.

With air-cooled condenser ACC.

Table 2. Comparison of power and heat rates in key power plant components.

Powers/Heat Rate (MW)	Baseline	LB-ORC	2PORC/BPS	ORC/BPS/TR
$\dot{W}_{st,T,gross}$	21.2	21.2	11.77	6.21
$\dot{W}_{HPorc,T}$	-	-	1.62	-
$\dot{W}_{LPorc,T}$	-	-	7.93	-
$\dot{W}_{orc,T,gross}$	4.04	4.36	9.55	17.0
$\dot{W}_{tot,gross}$	25.23	25.56	21.31	23.22
Ŵ _{p1}	0.47	0.47	0.09	0.36
Ŵ _{p2}	0.19	0.13	0.06	0.33
\dot{W}_{p3}	0.15	0.06	-	0.08
\dot{W}_{fans}	0.18	0.18	1.24	2.21
\dot{W}_{C1}	0.62	0.62	-	2.14
\dot{W}_{C2}	0.47	0.47	-	0.50
W _{tot.par}	2.08	1.94	1.39	5.58
W _{tot,net}	23.16	23.64	19.92	17.63
\dot{Q}_{EVA}	13.62	10.05	-	53.76
, Q _{PH}	11.36	11.28	-	20.01
Q_{LPEVA}	-	-	45.71	-
Q_{LPPH}	-	-	14.02	-
Q_{HPEVA}	-	-	16.16	-
Q_{HPPH}	-	-	7.51	-
Q_{RG}	4.63	6.15	12.02	31.1
Q_{IC}	-	-	-	25.87
$ Q_{wcc} $	21.14	17.56	-	-
Q_{ACCs}	-	-	86.0	91.06

Bagnore 3 Hybridization – Exergy Balances

Exergy balances: destructions, losses and power output. (**a**) = Baseline; (**b**) = 2P-ORC/BPS; (**c**) = ORC/BPS/TR; (**d**) = ORC/BPS/TR.

Table 3. Overall performance of the four power plant options.

Parameter	u.m.	Baseline	LB-ORC	2PORC/BPS	ORC/BPS/TR
	-	13.2	13.5	11.32	10.02
	-	42.8	43.5	36.38	32.55
USFR	(kg/s)/kWh	19.08	18.72	22.03	24.91
EF _{CO2}	g/kWh	396	388	454	0
EF _{H2S}	g/kWh	1.21	1.18	0.28	0
EF _{Hg}	mg/kWh	1.3	1.27	0.42	0

DIEF Dipartimento di Ingegneria Industriale

2009-2012

Circuit Layout:

•Geothermal Heat Exchanger;

- •Steam vessel fed by solar thermal collectors (preheaters/evaporators with drum; typically evacuated pipe collectors without concentration);
- •High temperature solar field with focusing collectors (low optical concentration).

•Eventual reheater/RHE (regenerator)

•Microturbine expander;

•High-temperature heat user (desuperheater)

•Low-temperature heat user (condenser)

Micro CHP: geothermal + solar superheating from low enthalpy resources

UNIVERSITA

degli stud FIRENZI

Dynamic analysis of system including off-design behavior of main components (HXs, expander) UNIVERSITÀ DEGLI STUDI FIRENZE

Small Solar/Geothermal Power Units

DIEF Dipartimento di Ingegneria Industriale

Fluid	R134a	CyclHex	N-Pentane	R245fa	R1234yf	R236fa		Negative
W [kW]	50	50	50	50	50	50		
Rec_Eff	0	0	0	0	0,25	0		Positive
T_geoin [K]	363	363	363	363	363	363		DSH inlet
T_cond [K]	318	318	318	318	318	318],	Temperature
T_max [K]	420	420	420	420	420	420] /	
p_C [bar]	40,59	40,75	33,6	36,5	33,8	32] /	Well Reinjection
T_C [K]	374	554	470	427	368	398		Temperature
T_DSH [K]	371	358	373	335	369	365	¥/	
T_geoout [K]	321	321	322	323	333	323	¥	Steam Generator
DeltaT_SH [K]	49	1,76	21,8	1,6	56,5	25		Pressure
p_GV [bar]	38	5	10	31	31	30		
p_cond [bar]	11,6	0,298	1,36	2,92	11,5	5	•	DSH/Condenser
m_f [kg/s]	1,77	0,544	0,67	1,33	2,32	1,83]]	Pressure
VFR_7 [m3/s]	0,041	0,6382	0,206	0,088	0,05	0,066		
m_geo [kg/s]	0,63	0,2528	0,386	0,43	0,93	0,585		Flow fales
m_solar [kg/s]	1,1	5,73	1,85	3,35	1,234	1,133		
A_eff_coll [m2]	338	261	308	252	383	289	↓ N	let area collectors field
[kg/(sm2)]	0,0033	0,0220	0,0060	0,0133	0,0032	0,0039		
[kg/(hm2)]	11,72	79,03	21,62	47,86	11,60	14,11]	Collectors field specific

Small Solar/Geothermal Power Units

Results of simulation with different working fluids							Negative
Fluid	R134a	CycloHex	N-Pentane	R245fa	R1234yf	R236fa	Positive
Eta_sys	9,1	14,6	11,7	13	7,3	9,77	
EtaC	10,5	17,2	13,6	15,1	8,5	11,3	
Eta_x	13,5	19,4	16,1	18,7	10,7	14,6	
FracPump	0,103	0,085	0,024	0,073	0,197	0,17	← Work fraction Pump/Turbine
FracGeo	0,26	0,155	0,188	0,235	0,247	0,265	Geothermal fraction
Q_Geo [kW]	111	44,6	67	72,2	117	97,5	
Q_sol [kW]	316	244	288	235	357	270]]
Q_CHPBT [kW]	280	207	235	236	298	246	Heat balance
Q_CHPAT [kW]	102	31,8	71	24	136	79,7	
Q_Rec [kW]	0	0	0	0	45	0)
Delta_h_T [kJ/kg]	28,2	91,9	74,5	37,6	21,5	27,3	Turbine Enthalpy drop

Choice of Working Fluid:

- •Cyclohexane best for power output (Low pressurization)
- •R236fa best for geothermal fraction (but large pump power)
- •R245fa and N-Pentane good compromise (Low Pressurization)
- •Regenerator necessary for R1234yf (not large)
- •Moderate enthalpy drop, possible simple one-stage axial expanders

Exergy balance, different working fluids

From accurate 0D design (real EOS with evaluation of losses) ...

Accurate 0D design for different fluids (real EOS with evaluation of losses)

università degli studi FIRENZE

Accurate 0D design: influnce of the main parameters on the geometry: flow coefficient ϕ , load coefficient ψ isentropic degree of reaction Rs

Variation of velocity triangles with <u>increasing</u> <u>flow coefficient ϕ </u> (from **solid black** to **dashed green**, (a) **IFR** and (b) **IFG**)

Variation of velocity triangles at rotor inlet with <u>increasing load coefficient ψ (from solid black</u> to dashed green, (a) IFR and (b) IFG)

Variation of velocity triangles with <u>increasing</u> <u>isentropic degree of reaction **Rs** (from **solid black** to **dashed green**, (a) **IFR** and (b) **IFG**)</u>

Accurate 0D model: off design analysis and characteristic curves (des = design value)

Isentropic efficiency $\,\eta_{c}\,\text{vs.}$ corrected speed N_{c}

From the preliminary 0D to the Refined 3D design (real PR EOS, R134a)

Downscaled size from 50 kW of the basic 0D design to 5 kW

CFD design main results - improved geometry

From the preliminary 0D to the Refined 3D design (real PR EOS, R134a)

Relative Mach	Number	distribution on	meridional surface
	INGUINCE		inclutional surface

Variable	CFD design	Unit
m	0.2013	[kg/s]
η_{ts}	71.76	[%]
Р	5,162	[W]
ZB	10	
p ₂	1.67	[MPa]
P ₀₂	2.87	[MPa]
p ₃	0.94	[MPa]
роз	0.95	[MPa]
T ₀₂	399.4	[K]
T ₀₃	362.2	[K]
h ₀₂	342,990	[J/kg]
hos	317,348	[]/kg]

Distribution of relative velocity (Midspan layer, Improved geometry).

819.5

. .

Table 7

Comparison between 0D design and 3D CFD design for improved geometry.

Variable	Unit	0D design	3D CFD improved design	0D-3D relative error [%]
C2	[m/s]	162.3	166.0	2.2
C3	[m/s]	21.7	26.8	19.0
η_{ts}	[%]	72.78	71.76	-1.42
P	[W]	5422	5162	-4.8

Good agreement between preliminary 0D and 3D

refined design

 \Rightarrow Reliable combined tool:

OD: defines the basic geometry;

3D: refines the channels shape and the number of blades

Kalina **2015**

- Kalina cycles: may be preferred to ORCs when the geothermal fluid has temperature < 150 °C
- <u>NH3-H2O mixture</u> has a <u>range of evaporation curves</u> depending on the composition and temperature ⇒ possibility of <u>working</u> with <u>low well temperature</u> is <u>considerably</u> <u>extended</u>

MATCHING THE CONDENSER AND EVAPORATOR CURVES

The **matching level of the curves is attractive** due to the variable evaporation and condensing temperatures.

 \Rightarrow reduction of the irreversibilities related to heat transfer.

Condenser temperature/heat transfer diagram

Evaporator temperature/heat transfer diagram

PARAMETRIC ANALYSIS AND OPTIMIZATION OF THE POWER CYCLE $\mathbf{Q} \downarrow \mathbf{W}_{\mathbf{P}} \uparrow \mathbf{x}_{1} \downarrow \Rightarrow \mathbf{W}_{\mathbf{T}} \downarrow$

0.16

0,14

0,12

0,1

0.06

375

Del

A sensitivity analysis was performed analyzing the power cycle performance (<u>efficiency</u> η_{el}) in function of the following main parameters:

- NH3-H2O composition (3 values) 1)
- 2) Condenser pressure
- Evaporator pressure (optimizing range 45-55 bar) 3)
- 4) **Evaporator temperature**

Kalina **2016**

Mt. Amiata case study T_{well} = 212°C

Pomarance case study

T_{resource} = 120°C

Mt. Amiata case study T_{well} = 212°C

Pomarance case study

T_{resource} = 120°C

	Mt. Amiata cas	e study (212°C)	TLR Pomarance case study (120°C)		
	Kalina	ORC (R1233zd(E))	Kalina	ORC (R1234ze)	
Power [kW]	5982	6237	645	483	
First law efficiency	0.1684	0.1755	0.1289	0.0966	
Second law efficiency	0.5731	0.5943	0.5709	0.4276	
Critical component	Turbine	Turbine	Turbine	Condenser; Evaporator	
TCI [k€]	8663	8483	2244	1852	
Electricity cost	9.125	8.845	12.53	15.53	